Suppose that
$$\vec{b}$$
 is a vector of magnitude 3, and \vec{d} is a vector of magnitude 2, and the angle between \vec{b} and \vec{d} is $\frac{5\pi}{6}$ radians. Fill in the blanks.

SCORE:

[a]
$$\|\vec{b} \times \vec{d}\| = \frac{3}{2} = \|\vec{b}\| \|\vec{d}\| \le m\theta = 3.2 \le m\sqrt{2}$$

BXB = 100 0 Z MUST BE A VECTOR, NOTA NUMBER

Fill in 1 NOTE	the blanks. GRADED BY ME : For each part (ie. [a], [b], [c]), you must fill in all blanks correctly to receive any credit.	SCORE:/6 PTS
[a]	If plane \mathcal{O}_1 is perpendicular to plane \mathcal{O}_2 , then the vector of plane \mathcal{O}_1 is	PENDICHARto the
	NORMAL vector of plane \wp_2 .	
[b]	If line ℓ_1 is parallel to line ℓ_2 , then the <u>DIRECTION</u> vector of line ℓ_1 is <u>PARALLE</u>	to the

[c] If line ℓ is parallel to plane \wp , then the DRETTON vector of line ℓ is PERPENDICUARO the

DIRECTION vector of line ℓ_2 .

NORMAL vector of plane 8.

the blanks.

If
$$\vec{u} \times \vec{v} = \langle -3, 2, -5 \rangle$$
, then $\vec{v} \times \vec{u} = 2$, $5 > 1$, 5

If
$$(\vec{u} \times \vec{v}) \cdot \vec{w} = -12$$
, then $\vec{u} \cdot (\vec{v} \times \vec{w}) = -12$ $= (\vec{v} \times \vec{v}) \cdot \vec{w}$

[a]

If
$$\vec{u}$$
, \vec{v} and \vec{x} are adjacent edges of a parallelepiped, and $\vec{u} \times \vec{v} = \langle 3, -2, -5 \rangle$ and $\vec{x} = \langle 1, -3, 3 \rangle$, then the volume of the parallelepiped is $|\vec{u} \times \vec{v}| = |\vec{u} \times \vec{v}| = |\vec{u} \times \vec{v}| = |\vec{u} \times \vec{v}|$

Let P be the point (-5, -1, 3).

ALL ITEMS

SCORE: _____ / 17 PTS

Let Q be the point (-4, 1, 4).

Let R be the point such that $PR = 3\vec{j} + 2\vec{k}$.

1) POINT UNLESS OTHERWISE NOTED

[a] Find parametric equations for the line which is parallel to
$$\frac{x+4}{6} = 3 - y = \frac{z-5}{2}$$
, and also contains Q .

$$x = -4 + 6t$$

 $y = 1 - t$
 $z = 4 + 2t$

Find the standard (point-normal) equation of the plane which is parallel to both \overline{PQ} and \overline{PR} , and also contains P. [b]

$$\overrightarrow{PQ} = \langle 1, 2, 1 \rangle$$
 $\overrightarrow{r} = |\overrightarrow{r} | \overrightarrow{r} | = \langle 1, -2, 3 \rangle$
 $\overrightarrow{r} \cdot \overrightarrow{PQ} = |-4 + 3 = 0$
 $\overrightarrow{r} \cdot \overrightarrow{PQ} = |-6 + 6 = 0$

$$(x+5)-2(y+1)+3(z-3)=0$$

[c] Find the angle between the plane in part [b] and the plane
$$3x + y + 2z = 7$$
.

$$\cos^{-1} \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1| ||\vec{n}_2||} = \cos^{-1} \frac{|\langle 1, -2, 3 \rangle \cdot \langle 3, 1, 2 \rangle|}{|\langle 1, -2, 3 \rangle || |\langle 3, 1, 2 \rangle|} = \cos^{-1} \frac{|\vec{3} - 2 + 6|}{|\vec{4}|}$$

$$= \cos^{-1} \frac{1}{14} = \cos^{-1} \frac{1}{2} = \frac{1}{3}$$

[d]
$$S$$
 is a point such that $PQSR$ is a parallelogram. Find the area of parallelogram $PQSR$.

[e] Find a vector of magnitude 3 perpendicular to both
$$\overrightarrow{PQ}$$
 and \overrightarrow{PR} .

Find a vector of magnitude 3 perpendicular to both
$$PQ$$
 and PR .

 $\frac{3}{\sqrt{14}} \left(\frac{3}{\sqrt{14}} \left(\frac{3}{\sqrt{14}} \right) - \frac{3}{\sqrt{14}} \right)$